Developing a 3d Waveform Lidar Simulator for Forest
نویسندگان
چکیده
Waveform LiDAR systems is widely used in several fields such as terrain survey, disaster monitoring and forest monitoring. Especially, in forest research, using an echo signal is expected for understanding structural characteristics of the forest. However, an echo signal highly depends on the sensor configuration, the footprint size, the canopy structure, and terrain condition. Therefore, it is not easy to understand the forest attributes from the echo signal. In this paper, we describe the development and application of model which to simulate laser intersections within ideal forest environments and to visualize intersections. The developed model has three components. The first component was a creation of the forest environment as full polygon in 3DCG software. Characteristics of the forest was decided by individual trees which were generated by the plant growth model using species and planting years as the initial parameter. The second component was a simulation using a ray tracing to calculate intersections between the forest object and the modelled laser beam. In this study, a laser beam with a specific footprint and a pulse width was defined by spatiotemporal features. In point of view of spatial feature, numerous sub laser beams were generated within a specific footprint to make the laser beam hit the target uniformly. Each sub laser beam had the intensity which was calculated by both the distance from the center of laser beam and the TEM00. On the other hand, in point of view of time feature, each sub laser beam was defined as several particles based on the sampling rate. Each particle had the intensity which was calculated by the pulse width and the sampling rate. The third component was a creation of an echo signal of a specific footprint using the calculated intersections and its intensity, reflectance of target at intersections and sampling rate. Moreover, the developed model had a view function that was able to show the calculated intersections on the surface of target object. As results of simulation of ideal forest environment scenarios, the developed model demonstrated that the model generated the echo signal of different environments well and the viewer function helped to understand the interactions between sub laser beams and target objects.
منابع مشابه
3D Modelling of Individual Trees Using Full-waveform Lidar
For the last few decades, analysis of forest area has been conducted using remote sensing techniques such as aerial photogrammetry, satellite imagery, synthetic aperture radar and lidar. Airborne laser scanning in particular offers a cost-effective, versatile, operationally flexible and robust sampling tool for forest management. There is a growing industry trend towards techniques of ‘precisio...
متن کاملAuthor Guidelines for 8
The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global ...
متن کاملExploring the Measurement of Forests with Full Waveform Lidar through Monte-carlo Ray Tracing
This paper presents results from two simulation studies which attempt to measure forest height with full waveform lidar. MonteCarlo ray tracing is used to simulate a full waveform lidar response over explicitly represented 3D forest models. Gaussian decomposition and multi-spectral edge detection are used to estimate tree top and ground positions over a range of forest ages, stand densities and...
متن کاملEnd-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar Onboard a Satellite Initialized from Airborne Ultraviolet Lidar Experiments
In order to study forests at the global scale, a detailed link budget for a lidar system onboard satellite is presented. It is based on an original approach coupling airborne lidar observations and an end-to-end simulator. The simulator is initialized by airborne lidar measurements performed over temperate and tropical forests on the French territory, representing a wide range of forests ecosys...
متن کاملProcessing Full-waveform Lidar Data to Extract Forest Parameters and Digital Terrain Model: Validation in an Alpine Coniferous Forest
Small footprint discrete return lidar data have already proved useful for providing information on forest areas. During the last decade, a new generation of airborne laser scanners, called full-waveform (FW) lidar systems, has emerged. They digitize and record the entire backscattered signal of each emitted pulse. Fullwaveform data hold large potentialities. In this study, we investigated the p...
متن کامل